Answer
$$x \approx 0.179295$$
Work Step by Step
$$\eqalign{
& f\left( x \right) = {e^{ - x}} - \frac{{x + 4}}{5} \cr
& {\text{Let }}f\left( x \right) = 0 \cr
& {e^{ - x}} - \frac{{x + 4}}{5} = 0 \cr
& {\text{Differentiating}} \cr
& f'\left( x \right) = \frac{d}{{dx}}\left[ {{e^{ - x}} - \frac{{x + 4}}{5}} \right] \cr
& f'\left( x \right) = - {e^{ - x}} - \frac{1}{5} \cr
& {\text{Use the procedure Newton's Method for Approximations}} \cr
& {\text{Roots of }}f\left( x \right) = 0{\text{ }}\left( {{\text{See page 311}}} \right) \cr
& {x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}} \cr
& {\text{Substituting }}f\left( {{x_n}} \right){\text{ and }}f'\left( {{x_n}} \right){\text{ the Newton's method takes the}} \cr
& {\text{form}} \cr
& {x_{n + 1}} = {x_n} - \frac{{{e^{ - {x_n}}} - \frac{{{x_n} + 4}}{5}}}{{ - {e^{ - {x_n}}} - \frac{1}{5}}} \cr
& {x_{n + 1}} = {x_n} - \frac{{5{e^{ - {x_n}}} - \left( {{x_n} + 4} \right)}}{{ - 5{e^{ - {x_n}}} - 1}} \cr
& {\text{From the graph we can see that the first possible initial }} \cr
& {\text{approximation is }}x = 0 \cr
& {\text{Therefore}}{\text{,}} \cr
& n = 0,{\text{ }}{x_0} = 0 \cr
& {x_1} = 0 - \frac{{5{e^{ - 0}} - \left( {0 + 4} \right)}}{{ - 5{e^{ - 0}} - 1}} = \frac{1}{6} \cr
& {\text{Computing the same calculation we obtain:}}{\text{.}} \cr
& {x_2} \approx 0.179231 \cr
& {x_3} \approx 0.179295 \cr
& {x_4} \approx 0.179295 \cr
& \cr
& {\text{The approximation of the root is:}} \cr
& x \approx 0.179295 \cr} $$