Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 4 - Applications of the Derivative - 4.8 Newton's Method - 4.8 Exercises - Page 316: 11

Answer

\[\boxed{\begin{array}{*{20}{c}} n&{{x_n}} \\ 0&{1.500000} \\ 1&{0.101436} \\ 2&{0.501114} \\ 3&{ - 1.465956} \\ 4&{0.510961} \\ 5&{0.510973} \\ 6&{0.510973} \\ 7&{0.510973} \\ 8&{0.510973} \\ 9&{0.510973} \\ {10}&{0.510973} \end{array}}\]

Work Step by Step

\[\begin{gathered} {\text{Let }}f\left( x \right) = \sin x + x - 1,{\text{ and }}{x_0} = 1.5 \hfill \\ {\text{Using the Newton's Method }}{x_{n + 1}} = {x_n} - \frac{{f\left( {{x_n}} \right)}}{{f'\left( {{x_n}} \right)}} \hfill \\ f'\left( x \right) = \cos x + 1 \hfill \\ {\text{Then evaluating }}f\left( {{x_n}} \right){\text{ and }}f'\left( {{x_n}} \right) \hfill \\ {x_{n + 1}} = {x_n} - \frac{{\sin {x_n} + {x_n} - 1}}{{\cos {x_n} + 1}} \hfill \\ \hfill \\ {\text{Taking }}{x_0} = 1.5 \hfill \\ {x_0} = 1.5 \hfill \\ {x_{0 + 1}} = {x_1} = 1.5 - \frac{{\sin \left( {1.5} \right) + \left( {1.5} \right) - 1}}{{\cos \left( {1.5} \right) + 1}} \approx 0.101436 \hfill \\ {x_{1 + 1}} = {x_2} = 0.101436 - \frac{{\sin \left( {0.101436} \right) + \left( {0.101436} \right) - 1}}{{\cos \left( {0.101436} \right) + 1}} \approx 0.501114 \hfill \\ {x_{1 + 2}} = {x_3} = 0.501114 - \frac{{\sin \left( {0.501114} \right) + \left( {0.501114} \right) - 1}}{{\cos \left( {0.501114} \right) + 1}} \approx 0.510961 \hfill \\ {x_{1 + 3}} = {x_4} = 0.510961 - \frac{{\sin \left( {0.510961} \right) + \left( {0.510961} \right) - 1}}{{\cos \left( {0.510961} \right) + 1}} \approx 0.510973 \hfill \\ {x_{1 + 4}} = {x_5} = 0.510973 - \frac{{\sin \left( {0.510973} \right) + \left( {0.510973} \right) - 1}}{{\cos \left( {0.510973} \right) + 1}} \approx 0.510973 \hfill \\ {x_{1 + 5}} = {x_6} = 0.510973 - \frac{{\sin \left( {0.510973} \right) + \left( {0.510973} \right) - 1}}{{\cos \left( {0.510973} \right) + 1}} \approx 0.510973 \hfill \\ {x_{1 + 6}} = {x_7} = 0.510973 - \frac{{\sin \left( {0.510973} \right) + \left( {0.510973} \right) - 1}}{{\cos \left( {0.510973} \right) + 1}} \approx 0.510973 \hfill \\ {x_{1 + 7}} = {x_8} = 0.510973 - \frac{{\sin \left( {0.510973} \right) + \left( {0.510973} \right) - 1}}{{\cos \left( {0.510973} \right) + 1}} \approx 0.510973 \hfill \\ {x_{1 + 8}} = {x_9} = 0.510973 - \frac{{\sin \left( {0.510973} \right) + \left( {0.510973} \right) - 1}}{{\cos \left( {0.510973} \right) + 1}} \approx 0.510973 \hfill \\ {x_{1 + 9}} = {x_{10}} = 0.510973 - \frac{{\sin \left( {0.510973} \right) + \left( {0.510973} \right) - 1}}{{\cos \left( {0.510973} \right) + 1}} \approx 0.510973 \hfill \\ \hfill \\ {\text{Thus}}{\text{, we obtain}} \hfill \\ \boxed{\begin{array}{*{20}{c}} n&{{x_n}} \\ 0&{1.500000} \\ 1&{0.101436} \\ 2&{0.501114} \\ 3&{ - 1.465956} \\ 4&{0.510961} \\ 5&{0.510973} \\ 6&{0.510973} \\ 7&{0.510973} \\ 8&{0.510973} \\ 9&{0.510973} \\ {10}&{0.510973} \end{array}} \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.