Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 234: 57

Answer

$$\left( {{\text{ }}{f^{ - 1}}} \right)'\left( 2 \right) = \frac{6}{{13}}$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = \sqrt {{x^3} + x - 1} ,{\text{ at }}y = 3 \cr & {\text{For }}y = 3 \cr & 3 = \sqrt {{x^3} + x - 1} \cr & {\left( 3 \right)^2} = {\left( {\sqrt {{x^3} + x - 1} } \right)^2} \cr & 9 = {x^3} + x - 1 \cr & {x^3} + x - 10 = 0 \cr & {\text{Solving by using a calculator or a CAS}}{\text{, we obtain}} \cr & x = 2 \cr & {\text{Calculate }}f'\left( x \right) \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\sqrt {{x^3} + x - 1} } \right] \cr & f'\left( x \right) = \frac{{3{x^2} + 1}}{{2\sqrt {{x^3} + x - 1} }} \cr & {\text{Calculate }}f'\left( 2 \right) \cr & f'\left( 2 \right) = \frac{{3{{\left( 2 \right)}^2} + 1}}{{2\sqrt {{{\left( 2 \right)}^3} + \left( 2 \right) - 1} }} = \frac{{13}}{6} \cr & {\text{The derivative of }}{f^{ - 1}}\left( x \right){\text{ is}} \cr & \left( {{\text{ }}{f^{ - 1}}} \right)'\left( x \right) = \frac{1}{m} = \frac{1}{{f'\left( x \right)}} \cr & {\text{Therefore}}{\text{,}} \cr & {\text{ }}\left( {{\text{ }}{f^{ - 1}}} \right)'\left( 2 \right) = \frac{1}{{f'\left( 2 \right)}} \cr & \left( {{\text{ }}{f^{ - 1}}} \right)'\left( 2 \right) = \frac{1}{{13/6}} \cr & \left( {{\text{ }}{f^{ - 1}}} \right)'\left( 2 \right) = \frac{6}{{13}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.