Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 234: 51

Answer

$$\frac{{xg\left( x \right)f'\left( x \right) + f\left( x \right)g\left( x \right) - xf\left( x \right)g'\left( x \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$$

Work Step by Step

$$\eqalign{ & \frac{d}{{dx}}\left[ {\frac{{xf\left( x \right)}}{{g\left( x \right)}}} \right] \cr & {\text{Let }}f\left( x \right){\text{ and }}g\left( x \right){\text{ differentiable functions with }}g\left( x \right) \ne 0 \cr & {\text{use the quotient rule}} \cr & \frac{d}{{dx}}\left[ {\frac{{xf\left( x \right)}}{{g\left( x \right)}}} \right] = \frac{{g\left( x \right)\frac{d}{{dx}}\left[ {xf\left( x \right)} \right] - xf\left( x \right)\frac{d}{{dx}}\left[ {g\left( x \right)} \right]}}{{{{\left[ {g\left( x \right)} \right]}^2}}} \cr & {\text{use the product rule for }}\frac{d}{{dx}}\left[ {xf\left( x \right)} \right] \cr & \frac{d}{{dx}}\left[ {\frac{{xf\left( x \right)}}{{g\left( x \right)}}} \right] = \frac{{g\left( x \right)\left( {x\frac{d}{{dx}}\left[ {f\left( x \right)} \right] + f\left( x \right)\frac{d}{{dx}}\left[ x \right]} \right) - xf\left( x \right)\frac{d}{{dx}}\left[ {g\left( x \right)} \right]}}{{{{\left[ {g\left( x \right)} \right]}^2}}} \cr & {\text{solve the derivatives}} \cr & \frac{d}{{dx}}\left[ {\frac{{xf\left( x \right)}}{{g\left( x \right)}}} \right] = \frac{{g\left( x \right)\left( {xf'\left( x \right) + f\left( x \right)\left( 1 \right)} \right) - xf\left( x \right)g'\left( x \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}} \cr & {\text{simplifying}} \cr & \frac{d}{{dx}}\left[ {\frac{{xf\left( x \right)}}{{g\left( x \right)}}} \right] = \frac{{xg\left( x \right)f'\left( x \right) + f\left( x \right)g\left( x \right) - xf\left( x \right)g'\left( x \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.