Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 234: 41

Answer

$$y = x$$

Work Step by Step

$$\eqalign{ & y = 3{x^3} + \sin x,{\text{ point }}\left( {0,0} \right) \cr & {\text{differentiate }}y \cr & y'\left( x \right) = \frac{d}{{dx}}\left[ {3{x^3} + \sin x} \right] \cr & y'\left( x \right) = 9{x^2} + \cos x \cr & {\text{find the slope at the point }}\left( {0,0} \right) \cr & \,\,\,m = y'\left( 0 \right) \cr & \,\,\,m = 9{\left( 0 \right)^2} + \cos \left( 0 \right) \cr & \,\,\,m = 1 \cr & {\text{find the equation of the tangent line at the point }}\left( {0,0} \right) \cr & \,\,\,\,\,y - {y_1} = m\left( {x - {x_1}} \right) \cr & \,\,\,\,\,y - 0 = 1\left( {x - 0} \right) \cr & {\text{simplify}} \cr & \,\,\,\,\,y = x \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.