Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 234: 43

Answer

$$y = - \frac{4}{5}x + \frac{{24}}{5}$$

Work Step by Step

$$\eqalign{ & y + \sqrt {xy} = 6{\text{ point }}\left( {1,4} \right) \cr & {\text{use implicit differentiation}}{\text{, differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ y \right] + \frac{d}{{dx}}\left[ {\sqrt x \sqrt y } \right] = \frac{d}{{dx}}\left[ 6 \right] \cr & {\text{using the product rule}} \cr & \frac{d}{{dx}}\left[ y \right] + \sqrt x \frac{d}{{dx}}\left[ {\sqrt y } \right] + \sqrt y \frac{d}{{dx}}\left[ {\sqrt x } \right] = \frac{d}{{dx}}\left[ 6 \right] \cr & {\text{solve derivatives}} \cr & y'\left( x \right) + \sqrt x \left( {\frac{1}{{2\sqrt y }}} \right)y'\left( x \right) + \sqrt y \left( {\frac{1}{{2\sqrt x }}} \right) = 0 \cr & {\text{simplify}} \cr & y'\left( x \right) + \frac{1}{2}\sqrt {\frac{x}{y}} y'\left( x \right) + \frac{1}{2}\sqrt {\frac{y}{x}} = 0 \cr & {\text{Solve for }}y'\left( x \right) \cr & \left( {1 + \frac{1}{2}\sqrt {\frac{x}{y}} } \right)y'\left( x \right) = - \frac{1}{2}\sqrt {\frac{y}{x}} \cr & \,\,y'\left( x \right) = \frac{{ - \frac{1}{2}\sqrt {\frac{y}{x}} }}{{1 + \frac{1}{2}\sqrt {\frac{x}{y}} }} \cr & {\text{find the slope at the point }}\left( {1,4} \right) \cr & \,\,\,m = \frac{{ - \frac{1}{2}\sqrt 4 }}{{1 + \frac{1}{2}\sqrt {1/4} }} \cr & \,\,\,m = - \frac{4}{5} \cr & {\text{find the equation of the tangent line at the point }}\left( {1,4} \right) \cr & \,\,\,\,\,y - {y_1} = m\left( {x - {x_1}} \right) \cr & \,\,\,\,\,y - 4 = - \frac{4}{5}\left( {x - 1} \right) \cr & {\text{simplify}} \cr & \,\,\,\,\,y - 4 = - \frac{4}{5}x + \frac{4}{5} \cr & \,\,\,\,\,y = - \frac{4}{5}x + \frac{4}{5} + 4 \cr & \,\,\,\,\,y = - \frac{4}{5}x + \frac{{24}}{5} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.