Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 234: 50

Answer

\[=\frac{1}{2}\sqrt{\frac{g\left( x \right)}{f\left( x \right)}}\left( \frac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{\left[ g\left( x \right) \right]}^{2}}} \right)\]

Work Step by Step

\[\begin{align} & \frac{d}{dx}\left[ \sqrt{\frac{f\left( x \right)}{g\left( x \right)}} \right] \\ & \text{Rewrite} \\ & \frac{d}{dx}{{\left( \frac{f\left( x \right)}{g\left( x \right)} \right)}^{1/2}} \\ & \text{Diffetentiate by using the chain rule} \\ & =\frac{1}{2}{{\left( \frac{f\left( x \right)}{g\left( x \right)} \right)}^{-1/2}}\frac{d}{dx}\left( \frac{f\left( x \right)}{g\left( x \right)} \right) \\ & \text{Use the quotient rule} \\ & =\frac{1}{2}{{\left( \frac{f\left( x \right)}{g\left( x \right)} \right)}^{-1/2}}\left( \frac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{\left[ g\left( x \right) \right]}^{2}}} \right) \\ & \text{Simplifying} \\ & =\frac{1}{2}{{\left( \frac{g\left( x \right)}{f\left( x \right)} \right)}^{1/2}}\left( \frac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{\left[ g\left( x \right) \right]}^{2}}} \right) \\ & =\frac{1}{2}\sqrt{\frac{g\left( x \right)}{f\left( x \right)}}\left( \frac{g\left( x \right)f'\left( x \right)-f\left( x \right)g'\left( x \right)}{{{\left[ g\left( x \right) \right]}^{2}}} \right) \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.