Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 234: 47

Answer

$$\eqalign{ & y' = \frac{{\cos \sqrt x }}{{2\sqrt x }} \cr & y'' = - \frac{{\sqrt x \sin \sqrt x + \cos \sqrt x }}{{4{x^{3/2}}}} \cr & y''' = \frac{{3\sqrt x \sin \sqrt x + \left( {3 - x} \right)\cos \sqrt x }}{{8{x^{5/2}}}} \cr} $$

Work Step by Step

$$\eqalign{ & y = \sin \sqrt x \cr & {\text{Calculate }}y'{\text{ differentiating both sides with respect to }}x \cr & y' = \frac{d}{{dx}}\left[ {\sin \sqrt x } \right] \cr & y' = \cos \sqrt x \left( {\frac{1}{{2\sqrt x }}} \right) \cr & y' = \frac{{\cos \sqrt x }}{{2\sqrt x }} \cr & {\text{Calculate }}y''{\text{ differentiating both sides with respect to }}x \cr & y'' = \frac{d}{{dx}}\left[ {\frac{{\cos \sqrt x }}{{2\sqrt x }}} \right] \cr & y'' = \frac{{2\sqrt x \left( { - \sin \sqrt x } \right)\left( {\frac{1}{{2\sqrt x }}} \right) - \cos \sqrt x \left( 2 \right)\left( {\frac{1}{{2\sqrt x }}} \right)}}{{{{\left( {2\sqrt x } \right)}^2}}} \cr & y'' = \frac{{ - \sin \sqrt x - \frac{{\cos \sqrt x }}{{\sqrt x }}}}{{4x}} \cr & y'' = \frac{{ - \sqrt x \sin \sqrt x - \cos \sqrt x }}{{4x\sqrt x }} \cr & y'' = - \frac{{\sqrt x \sin \sqrt x + \cos \sqrt x }}{{4{x^{3/2}}}} \cr & {\text{Calculate }}y'''{\text{ differentiating both sides with respect to }}x \cr & y''' = - \frac{{4{x^{3/2}}\left( {\frac{1}{2}\cos \sqrt x + \frac{{\sin \sqrt x }}{{2\sqrt x }} - \frac{{\sin \sqrt x }}{{2\sqrt x }}} \right) - 6\sqrt x \left( {\sqrt x \sin \sqrt x + \cos \sqrt x } \right)}}{{16{x^3}}} \cr & {\text{Simplifying}} \cr & y''' = - \frac{{2{x^{3/2}}\cos \sqrt x - 6x\sin \sqrt x - 6\sqrt x \cos \sqrt x }}{{16{x^3}}} \cr & y''' = - \frac{{x\cos \sqrt x - 3{x^{1/2}}\sin \sqrt x - 3\cos \sqrt x }}{{8{x^{5/2}}}} \cr & y''' = \frac{{3\sqrt x \sin \sqrt x + \left( {3 - x} \right)\cos \sqrt x }}{{8{x^{5/2}}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.