Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - Review Exercises - Page 234: 45

Answer

\[\begin{align} & \text{Horizontal tangent line for }x=4 \\ & \text{Vertical tangent line for }x=6 \\ \end{align}\]

Work Step by Step

\[\begin{align} & \text{Let }y=x\sqrt{6-x} \\ & \text{Differentiate} \\ & \frac{dy}{dx}=\frac{d}{dx}\left[ x\sqrt{6-x} \right] \\ & \frac{dy}{dx}=x\frac{d}{dx}\left[ \sqrt{6-x} \right]+\sqrt{6-x}\frac{d}{dx}\left[ x \right] \\ & \frac{dy}{dx}=x\left( -\frac{1}{2\sqrt{6-x}} \right)+\sqrt{6-x}\left( 1 \right) \\ & \frac{dy}{dx}=-\frac{x}{2\sqrt{6-x}}+\sqrt{6-x} \\ & \text{Let }\frac{dy}{dx}=0\text{ }\left( \text{Horizontal tangent line} \right) \\ & -\frac{x}{2\sqrt{6-x}}+\sqrt{6-x}=0 \\ & \frac{x}{2\sqrt{6-x}}=\sqrt{6-x} \\ & x=2\left( 6-x \right) \\ & x=12-2x \\ & 3x=12 \\ & x=4 \\ \text{Vertical Tangent Lines:} \\ & \frac{dy}{dx}=-\frac{x}{2\sqrt{6-x}}+\sqrt{6-x} \text{ is undefined when} \\ & 2\sqrt{6-x}=0 \\ & x=6 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.