Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 211: 47

Answer

$$\eqalign{ & h'\left( x \right) = {x^{\sqrt x }}\left( {\frac{{2 + \ln x}}{{2\sqrt x }}} \right) \cr & h'\left( 4 \right) = 4\left( {2 + \ln 4} \right) \cr} $$

Work Step by Step

$$\eqalign{ & h\left( x \right) = {x^{\sqrt x }};\,\,\,\,\,\,a = 4 \cr & {\text{Use }}{b^x} = {e^{x\ln b}},{\text{ then}} \cr & h\left( x \right) = {e^{\sqrt x \ln x}} \cr & {\text{Differentiating}} \cr & h'\left( x \right) = {e^{\sqrt x \ln x}}\frac{d}{{dx}}\left[ {\sqrt x \ln x} \right] \cr & h'\left( x \right) = {e^{\sqrt x \ln x}}\left[ {\sqrt x \left( {\frac{1}{x}} \right) + \frac{{\ln x}}{{2\sqrt x }}} \right] \cr & h'\left( x \right) = {x^{\sqrt x }}\left[ {\frac{1}{{\sqrt x }} + \frac{{\ln x}}{{2\sqrt x }}} \right] \cr & h'\left( x \right) = {x^{\sqrt x }}\left( {\frac{{2 + \ln x}}{{2\sqrt x }}} \right) \cr & \cr & {\text{Evaluate the derivative at }}x = 4 \cr & h'\left( 4 \right) = {4^{\sqrt 4 }}\left( {\frac{{2 + \ln 4}}{{2\sqrt 4 }}} \right) \cr & h'\left( 4 \right) = 16\left( {\frac{{2 + \ln 4}}{4}} \right) \cr & h'\left( 4 \right) = 4\left( {2 + \ln 4} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.