Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.9 Derivatives of Logarithmic and Exponential Functions - 3.9 Exercises - Page 211: 46

Answer

$$\eqalign{ & g'\left( x \right) = 2{x^{\ln x - 1}}\ln x \cr & g'\left( e \right) = 2 \cr} $$

Work Step by Step

$$\eqalign{ & g\left( x \right) = {x^{\ln x}};\,\,\,\,\,\,a = e \cr & {\text{Use }}{b^x} = {e^{x\ln b}},{\text{ then}} \cr & g\left( x \right) = {e^{\ln x\ln x}} \cr & g\left( x \right) = {e^{{{\ln }^2}x}} \cr & {\text{Differentiating}} \cr & g'\left( x \right) = {e^{{{\ln }^2}x}}\frac{d}{{dx}}\left[ {{{\ln }^2}x} \right] \cr & g'\left( x \right) = {e^{{{\ln }^2}x}}\left( {2\ln x} \right)\left( {\frac{1}{x}} \right) \cr & g'\left( x \right) = \frac{{2{e^{{{\ln }^2}x}}\ln x}}{x} \cr & g'\left( x \right) = \frac{{2\left( {{x^{\ln x}}} \right)\ln x}}{x} \cr & g'\left( x \right) = 2{x^{\ln x - 1}}\ln x \cr & \cr & {\text{Evaluate the derivative at }}x = e \cr & g'\left( e \right) = 2{e^{\ln e - 1}}\ln e \cr & g'\left( e \right) = 2{e^0}\left( 1 \right) \cr & g'\left( e \right) = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.