Answer
\[\begin{align}
& \text{No horizontal tangent line} \\
& \text{Vertical tangent lines at}\left( -e\sqrt{e},3 \right),\left( e\sqrt{e},3 \right) \\
\end{align}\]
Work Step by Step
\[\begin{align}
& {{x}^{2}}\left( y-2 \right)-{{e}^{y}}=0 \\
& \text{Differentiate implicitly with respect to }x \\
& \frac{d}{dx}\left[ {{x}^{2}}\left( y-2 \right)-{{e}^{y}} \right]=\frac{d}{dx}\left[ 0 \right] \\
& {{x}^{2}}\left( \frac{dy}{dx}-0 \right)+2x\left( y-2 \right)-{{e}^{y}}\frac{dy}{dx}=0 \\
& \text{Solve for }\frac{dy}{dx} \\
& {{x}^{2}}\frac{dy}{dx}+2x\left( y-2 \right)-{{e}^{y}}\frac{dy}{dx}=0 \\
& {{x}^{2}}\frac{dy}{dx}-{{e}^{y}}\frac{dy}{dx}=2x\left( 2-y \right) \\
& \left( {{x}^{2}}-{{e}^{y}} \right)\frac{dy}{dx}=2x\left( 2-y \right) \\
& \frac{dy}{dx}=\frac{2x\left( 2-y \right)}{{{x}^{2}}-{{e}^{y}}} \\
& \text{The points on the curve at which the tangent line is horizontal } \\
& \text{are when the slope is 0, then} \\
& \frac{dy}{dx}=\frac{2x\left( 2-y \right)}{{{x}^{2}}-{{e}^{y}}}=0 \\
& 2x\left( 2-y \right)=0 \\
& x=0,\text{ }y=2 \\
& \text{Substitute }x=0\text{ into }{{x}^{2}}\left( y-2 \right)-{{e}^{y}}=0 \\
& {{\left( 0 \right)}^{2}}\left( y-2 \right)-{{e}^{y}}=0 \\
& -{{e}^{y}}=0 \\
& {{e}^{y}}=0 \\
& \text{Where }{{e}^{y}}\text{ is always positive}\text{.} \\
& \text{Substitute }y=2\text{ into }{{x}^{2}}\left( y-2 \right)-{{e}^{y}}=0 \\
& \text{ }{{x}^{2}}\left( 2-2 \right)-{{e}^{2}}=0 \\
& -{{e}^{2}}\ne 0 \\
& \text{Therefore, does not exist points at which the curve has slope 0} \\
& \\
& \text{The points on the curve at which the tangent line is vertical} \\
& \text{are when the slope is }\infty \text{, then} \\
& \frac{dy}{dx}=\frac{2x\left( 2-y \right)}{{{x}^{2}}-{{e}^{y}}}=\infty \\
& {{x}^{2}}-{{e}^{y}}=0 \\
& {{x}^{2}}={{e}^{y}} \\
& \\
& \text{Substituting }{{e}^{y}}\text{ for }{{x}^{2}}\text{ into }{{x}^{2}}\left( y-2 \right)-{{e}^{y}}=0 \\
& {{e}^{y}}\left( y-2 \right)-{{e}^{y}}=0 \\
& {{e}^{y}}\left( y-2-1 \right)=0 \\
& {{e}^{y}}\left( y-3 \right)=0 \\
& y=3 \\
& \text{Substituting }y=3\text{ into }{{x}^{2}}\left( y-2 \right)-{{e}^{y}}=0 \\
& {{x}^{2}}\left( 3-2 \right)-{{e}^{3}}=0 \\
& {{x}^{2}}={{e}^{3}} \\
& x=\pm \sqrt{{{e}^{3}}} \\
& x=\pm e\sqrt{e} \\
& \text{We obtain the points }\left( -e\sqrt{e},3 \right)\text{ and }\left( e\sqrt{e},3 \right) \\
& \text{The points at which the curve has slope }\infty \text{ are }\left( -e\sqrt{e},3 \right),\left( e\sqrt{e},3 \right) \\
& \\
& \text{This graph confirms the result} \\
\end{align}\]