Answer
\[\begin{align}
& \text{Does not exist points at which the curve has slope }0 \\
& \text{Does not exist points at which the curve has slope }\infty \\
\end{align}\]
Work Step by Step
\[\begin{align}
& {{y}^{2}}-3xy=2 \\
& \text{Differentiate implicitly with respect to }x \\
& \frac{d}{dx}\left[ {{y}^{2}}-3xy \right]=\frac{d}{dx}\left[ 2 \right] \\
& 2y\frac{dy}{dx}-3x\frac{dy}{dx}-3y=0 \\
& \text{Solve for }\frac{dy}{dx} \\
& 2y\frac{dy}{dx}-3x\frac{dy}{dx}=3y \\
& \left( 2y-3x \right)\frac{dy}{dx}=3y \\
& \frac{dy}{dx}=\frac{3y}{2y-3x} \\
& \text{The points on the curve at which the tangent line is horizontal } \\
& \text{are when the slope is 0, then} \\
& \frac{dy}{dx}=\frac{3y}{2y-3x}=0 \\
& 3y=0 \\
& y=0 \\
& \text{Substitute }y=0\text{ into }{{y}^{2}}-3xy=2\text{ to find }x \\
& {{0}^{2}}-3x\left( 0 \right)=2 \\
& 0\ne 2 \\
& \text{Therefore, does not exist points at which the curve has slope 0} \\
& \\
& \text{The points on the curve at which the tangent line is vertical} \\
& \text{are when the slope is }\infty \text{, then} \\
& \frac{dy}{dx}=\frac{3y}{2y-3x}=\infty \\
& \frac{3y}{2y-3x}=\infty \\
& 2y-3x=0 \\
& 2y=3x \\
& y=\frac{3x}{2} \\
& \text{Substituting }y=\frac{3x}{2}\text{ into }{{y}^{2}}-3xy=2 \\
& {{\left( \frac{3x}{2} \right)}^{2}}-3x\left( \frac{3x}{2} \right)=2 \\
& \frac{9{{x}^{2}}}{4}-\frac{9{{x}^{2}}}{4}=2 \\
& 0\ne 2 \\
& \text{Does not exist points at which the curve has slope }\infty \\
& \\
& \text{This graph confirms the result} \\
\end{align}\]