Answer
\[\begin{align}
& \text{No horizontal tangent line} \\
& \text{Vertical tangent lines at}\left( 2,1 \right),\left( -2,1 \right) \\
\end{align}\]
Work Step by Step
\[\begin{align}
& {{x}^{2}}\left( 3{{y}^{2}}-2{{y}^{3}} \right)=4 \\
& \text{Differentiate implicitly with respect to }x \\
& \frac{d}{dx}\left[ {{x}^{2}}\left( 3{{y}^{2}}-2{{y}^{3}} \right) \right]=\frac{d}{dx}\left[ 4 \right] \\
& {{x}^{2}}\left( 6y\frac{dy}{dx}-6{{y}^{2}}\frac{dy}{dx} \right)+2x\left( 3{{y}^{2}}-2{{y}^{3}} \right)=0 \\
& \text{Solve for }\frac{dy}{dx} \\
& 6{{x}^{2}}y\left( 1-y \right)\frac{dy}{dx}=-2x\left( 3{{y}^{2}}-2{{y}^{3}} \right) \\
& \frac{dy}{dx}=\frac{-2x\left( 3{{y}^{2}}-2{{y}^{3}} \right)}{6{{x}^{2}}y\left( 1-y \right)} \\
& \frac{dy}{dx}=\frac{-\left( 3{{y}^{2}}-2{{y}^{3}} \right)}{3xy\left( 1-y \right)} \\
& \frac{dy}{dx}=\frac{2{{y}^{3}}-3{{y}^{2}}}{3xy-3x{{y}^{2}}} \\
& \frac{dy}{dx}=\frac{2{{y}^{2}}-3y}{3x-3xy} \\
& \text{The points on the curve at which the tangent line is horizontal } \\
& \text{are when the slope is 0, then} \\
& \frac{dy}{dx}=\frac{2{{y}^{2}}-3y}{3x-3xy}=0 \\
& 2{{y}^{2}}-3y=0 \\
& y\left( 2y-3 \right)=0 \\
& y=0,\text{ }y=\frac{3}{2} \\
& \text{Substitute }y=0\text{ and }y=\frac{3}{2}\text{ into }{{x}^{2}}\left( 3{{y}^{2}}-2{{y}^{3}} \right)=4 \\
& {{x}^{2}}\left( 3{{\left( 0 \right)}^{2}}-2{{\left( 0 \right)}^{3}} \right)=4 \\
& 0\ne 4 \\
& {{x}^{2}}\left( 3{{\left( \frac{3}{2} \right)}^{2}}-2{{\left( \frac{3}{2} \right)}^{3}} \right)=4 \\
& {{x}^{2}}\left( \frac{27}{4}-\frac{27}{4} \right)=4 \\
& 0\ne 4 \\
& \text{Therefore, does not exist points at which the curve has slope 0} \\
& \\
& \text{The points on the curve at which the tangent line is vertical} \\
& \text{are when the slope is }\infty \text{, then} \\
& \frac{dy}{dx}=\frac{2{{y}^{2}}-3y}{3x-3xy}=\infty \\
& 3x-3xy=\infty \\
& 3x\left( 1-y \right)=\infty \\
& x=0,\text{ }y=1 \\
& \text{Substituting }x=0\text{ into }{{x}^{2}}\left( 3{{y}^{2}}-2{{y}^{3}} \right)=4 \\
& {{\left( 0 \right)}^{2}}\left( 3{{y}^{2}}-2{{y}^{3}} \right)=4 \\
& 0\ne 4 \\
& \text{Substituting }y=1\text{ into }{{x}^{2}}\left( 3{{y}^{2}}-2{{y}^{3}} \right)=4 \\
& {{x}^{2}}\left( 3{{\left( 1 \right)}^{2}}-2{{\left( 1 \right)}^{3}} \right)=4 \\
& {{x}^{2}}\left( 1 \right)=4 \\
& {{x}^{2}}=4 \\
& x=\pm 2 \\
& \text{We obtain the points }\left( 2,1 \right)\text{ and }\left( -2,1 \right) \\
& \text{The points at which the curve has vertical tangent lines } \text{ are }\left( 2,1 \right),\left( -2,1 \right) \\
& \\
& \text{This graph confirms the result} \\
\end{align}\]