Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.8 Implicit Differentiation - 3.8 Exercises - Page 202: 76

Answer

\[\begin{align} & \mathbf{a}.\frac{dr}{dh}=-\frac{rh}{2{{r}^{2}}+{{h}^{2}}} \\ & \mathbf{b}.-\frac{6}{17} \\ \end{align}\]

Work Step by Step

\[\begin{align} & A=\pi r\sqrt{{{r}^{2}}+{{h}^{2}}} \\ & \mathbf{a}\mathbf{.}\text{ For }A=1500\pi \\ & \pi r\sqrt{{{r}^{2}}+{{h}^{2}}}=1500\pi \\ & \text{Differentiate both sides with respect to }h \\ & \frac{d}{dh}\left[ \pi r\sqrt{{{r}^{2}}+{{h}^{2}}} \right]=\frac{d}{dh}\left[ 1500\pi \right] \\ & \pi r\frac{d}{dh}\left[ \sqrt{{{r}^{2}}+{{h}^{2}}} \right]+\sqrt{{{r}^{2}}+{{h}^{2}}}\frac{d}{dh}\left[ \pi r \right]=\frac{d}{dh}\left[ 1500\pi \right] \\ & \pi r\left( \frac{1}{2\sqrt{{{r}^{2}}+{{h}^{2}}}} \right)\left( 2r\frac{dr}{dh}+2h \right)+\pi \sqrt{{{r}^{2}}+{{h}^{2}}}\frac{dr}{dh}=0 \\ & \text{Solve for }\frac{dr}{dh} \\ & \frac{\pi {{r}^{2}}}{\sqrt{{{r}^{2}}+{{h}^{2}}}}\frac{dr}{dh}+\frac{\pi rh}{\sqrt{{{r}^{2}}+{{h}^{2}}}}+\pi \sqrt{{{r}^{2}}+{{h}^{2}}}\frac{dr}{dh}=0 \\ & \frac{\pi {{r}^{2}}}{\sqrt{{{r}^{2}}+{{h}^{2}}}}\frac{dr}{dh}+\pi \sqrt{{{r}^{2}}+{{h}^{2}}}\frac{dr}{dh}=-\frac{\pi rh}{\sqrt{{{r}^{2}}+{{h}^{2}}}} \\ & \left( \frac{\pi {{r}^{2}}}{\sqrt{{{r}^{2}}+{{h}^{2}}}}+\pi \sqrt{{{r}^{2}}+{{h}^{2}}} \right)\frac{dr}{dh}=-\frac{\pi rh}{\sqrt{{{r}^{2}}+{{h}^{2}}}} \\ & \left( \frac{\pi {{r}^{2}}+\pi {{\left( \sqrt{{{r}^{2}}+{{h}^{2}}} \right)}^{2}}}{\sqrt{{{r}^{2}}+{{h}^{2}}}} \right)\frac{dr}{dh}=-\frac{\pi rh}{\sqrt{{{r}^{2}}+{{h}^{2}}}} \\ & \left( \frac{\pi {{r}^{2}}+\pi \left( {{r}^{2}}+{{h}^{2}} \right)}{\sqrt{{{r}^{2}}+{{h}^{2}}}} \right)\frac{dr}{dh}=-\frac{\pi rh}{\sqrt{{{r}^{2}}+{{h}^{2}}}} \\ & \left( 2\pi {{r}^{2}}+\pi {{h}^{2}} \right)\frac{dr}{dh}=-\pi rh \\ & \frac{dr}{dh}=-\frac{\pi rh}{2\pi {{r}^{2}}+\pi {{h}^{2}}} \\ & \frac{dr}{dh}=-\frac{rh}{2{{r}^{2}}+{{h}^{2}}} \\ & \\ & \mathbf{b}.\text{ Evaluate when }r=30\text{ and }h=40 \\ & \frac{dr}{dh}=-\frac{\left( 30 \right)\left( 40 \right)}{2{{\left( 30 \right)}^{2}}+{{\left( 40 \right)}^{2}}} \\ & \frac{dr}{dh}=-\frac{1200}{2\left( 900 \right)+\left( 1600 \right)} \\ & \frac{dr}{dh}=-\frac{6}{17} \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.