Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.8 Implicit Differentiation - 3.8 Exercises - Page 202: 84

Answer

$$y' = \frac{{200y\sqrt {3{x^7} + {y^2}} - 21{x^6}}}{{y - 2\sin 2y\sqrt {3{x^7} + {y^2}} - 200\sqrt {3{x^7} + {y^2}} x}}$$

Work Step by Step

$$\eqalign{ & \sqrt {3{x^7} + {y^2}} = {\sin ^2}y + 100xy \cr & {\text{Differentiate both sides with respect to }}x \cr & \frac{{21{x^6} + 2yy'}}{{2\sqrt {3{x^7} + {y^2}} }} = \left( {2\sin y\cos y} \right)y' + 100xy' + 100y \cr & \frac{{21{x^6}}}{{2\sqrt {3{x^7} + {y^2}} }} + \frac{{yy'}}{{2\sqrt {3{x^7} + {y^2}} }} = y'\sin 2y + 100xy' + 100y \cr & {\text{}} \cr & \frac{{yy'}}{{2\sqrt {3{x^7} + {y^2}} }} - y'\sin 2y - 100xy' = 100y - \frac{{21{x^6}}}{{2\sqrt {3{x^7} + {y^2}} }} \cr & \left( {\frac{y}{{2\sqrt {3{x^7} + {y^2}} }} - \sin 2y - 100x} \right)y' = 100y - \frac{{21{x^6}}}{{2\sqrt {3{x^7} + {y^2}} }} \cr & {\text{Solve for }}y' \cr & y' = \frac{{100y - \frac{{21{x^6}}}{{2\sqrt {3{x^7} + {y^2}} }}}}{{\frac{y}{{2\sqrt {3{x^7} + {y^2}} }} - \sin 2y - 100x}} \cr & y' = \frac{{\frac{{200y\sqrt {3{x^7} + {y^2}} - 21{x^6}}}{{2\sqrt {3{x^7} + {y^2}} }}}}{{\frac{{y - 2\sin 2y\sqrt {3{x^7} + {y^2}} - 200\sqrt {3{x^7} + {y^2}} x}}{{2\sqrt {3{x^7} + {y^2}} }}}} \cr & y' = \frac{{200y\sqrt {3{x^7} + {y^2}} - 21{x^6}}}{{y - 2\sin 2y\sqrt {3{x^7} + {y^2}} - 200\sqrt {3{x^7} + {y^2}} x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.