Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.8 Implicit Differentiation - 3.8 Exercises - Page 202: 77

Answer

\[\begin{align} & \mathbf{a}.\frac{dr}{dh}=\frac{h-2r}{h} \\ & \mathbf{b}.-3 \\ \end{align}\]

Work Step by Step

\[\begin{align} & V=\frac{\pi {{h}^{2}}\left( 3r-h \right)}{3} \\ & \mathbf{a}\mathbf{.}\text{ For }V=\frac{5\pi }{3} \\ & \frac{\pi {{h}^{2}}\left( 3r-h \right)}{3}=\frac{5\pi }{3} \\ & {{h}^{2}}\left( 3r-h \right)=5 \\ & \text{Differentiate both sides with respect to }h \\ & \frac{d}{dh}\left[ {{h}^{2}}\left( 3r-h \right) \right]=\frac{d}{dh}\left[ 5 \right] \\ & {{h}^{2}}\frac{d}{dh}\left[ 3r-h \right]+\left( 3r-h \right)\frac{d}{dh}\left[ {{h}^{2}} \right]=\frac{d}{dh}\left[ 5 \right] \\ & {{h}^{2}}\left( 3\frac{dr}{dh}-1 \right)+\left( 3r-h \right)\left( 2h \right)=0 \\ & \text{Solve for }\frac{dr}{dh} \\ & 3{{h}^{2}}\frac{dr}{dh}-{{h}^{2}}+2h\left( 3r-h \right)=0 \\ & \frac{dr}{dh}=\frac{{{h}^{2}}-2h\left( 3r-h \right)}{3{{h}^{2}}} \\ & \frac{dr}{dh}=\frac{h-2\left( 3r-h \right)}{3h} \\ & \frac{dr}{dh}=\frac{h-6r+2h}{3h} \\ & \frac{dr}{dh}=\frac{3h-6r}{3h} \\ & \frac{dr}{dh}=\frac{h-2r}{h} \\ & \\ & \mathbf{b}.\text{ Evaluate when }r=2\text{ and }h=1 \\ & \frac{dr}{dh}=\frac{1-2\left( 2 \right)}{1} \\ & \frac{dr}{dh}=-3 \\ \end{align}\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.