Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.8 Implicit Differentiation - 3.8 Exercises - Page 202: 82

Answer

$$y' = \frac{{5 - 4\sqrt \pi }}{{10}}$$

Work Step by Step

$$\eqalign{ & 5\sqrt x - 10\sqrt y = \sin x \cr & {\text{Differentiate both sides with respect to }}x \cr & 5\left( {\frac{1}{{2\sqrt x }}} \right) - 10\left( {\frac{1}{{2\sqrt y }}} \right)y' = \cos x \cr & \frac{5}{{2\sqrt x }} - \frac{5}{{2\sqrt y }}y' = \cos x \cr & \frac{5}{{2\sqrt y }}y' = \frac{5}{{2\sqrt x }} - \cos x \cr & y' = \frac{{2\sqrt y }}{5}\left( {\frac{5}{{2\sqrt x }} - \cos x} \right) \cr & y' = \sqrt {\frac{y}{x}} - \frac{{2\sqrt y \cos x}}{5} \cr & {\text{Evaluate at the point }}\left( {4\pi ,\pi } \right) \cr & y' = \sqrt {\frac{\pi }{{4\pi }}} - \frac{{2\sqrt \pi \cos 4\pi }}{5} \cr & y' = \frac{1}{2} - \frac{{2\sqrt \pi }}{5} \cr & y' = \frac{{5 - 4\sqrt \pi }}{{10}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.