Answer
$g'(x)= \frac{1-3x}{e^{3x}}$
Work Step by Step
$g(x)=\frac{x}{e^{3x}} = (x)(e^{-3x})$
Using Product Rule and $\frac{d}{dx}e^{nx} = ne^{nx}$
$g'(x)=(1)(e^{-3x})+(x)(-3e^{-3x}) = \frac{1}{e^{3x}} - \frac{3x}{e^{3x}} = \frac{1-3x}{e^{3x}}$