Answer
$\frac{1-2x}{2\sqrt x \times e^x}$
Work Step by Step
$(\frac{f}{g})'$ = $\frac{f'g-fg'}{g^2}$
$e^{-x}\sqrt x$ = $\frac{\sqrt x}{e^x}$
$(\frac{\sqrt x}{e^x})'$ = $\frac{(\frac{1}{2\times\sqrt x})(e^x)-(\sqrt x)(e^x)}{(e^x)^2}$ = $\frac{e^x-(e^x)(2x)}{2\sqrt x \times e^{2x}}$ = $\frac{1-2x}{2\sqrt x \times e^x}$