Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.2 Line Integrals - 16.2 Exercises - Page 1124: 9

Answer

$\dfrac{\sqrt 2}{3}$

Work Step by Step

$I=\int_{0}^{\pi/2} (\cos t)^2 (\sin t) \sqrt {{(-\sin t)^{2}}+(\cos t)^2 +1^2 }dt$ $=\int_{0}^{\pi/2} (\cos t)^2 (\sin t) (\sqrt 2)dt$ $=\sqrt 2 \int_{0}^{\pi/2} \cos^2 t(\sin t) dt$ Plug $a=\cos t $ and $da=-\sin t dt$ $=-\sqrt 2 \int_{1}^{0} a^2 da$ $=-\sqrt 2[\dfrac{a^3}{3}]_{1}^{0}$ $=\dfrac{\sqrt 2}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.