Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.2 Line Integrals - 16.2 Exercises - Page 1124: 12

Answer

$=\sqrt {5} [\dfrac{(2 \pi)^3}{3}+2\pi]$ or, $=2 \pi\sqrt {5} [1+\dfrac{(2 \pi)^2}{3}]$

Work Step by Step

$I=\int_{0}^{2 \pi} (t^2+\cos^2 2t+\sin^2 2t) \sqrt{{{(\dfrac{dx}{dt})^{2}}+{(\dfrac{dy}{dt})^{2}}}+(\dfrac{dz}{dt})^{2}}dt$ $I=\int_{0}^{2 \pi} (t^2+\cos^2 2t+\sin^2 2t) \sqrt{{{(1)^{2}}+{(-2 \sin 2t)^{2}}}+(2 \cos 2t)^{2}}dt$ $=\sqrt {5}\int_{0}^{2 \pi} (t^2+\cos^2 2t+\sin^2 2t) dt$ $=\sqrt {5} [\dfrac{(2 \pi)^3}{3}+2\pi]$ or, $=2 \pi\sqrt {5} [1+\dfrac{(2 \pi)^2}{3}]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.