Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.2 Line Integrals - 16.2 Exercises - Page 1124: 10

Answer

$\dfrac{107\sqrt {14}}{12}$

Work Step by Step

$I=\int_{0}^{1} (1+t)^2 (2+3 t) \sqrt {{(\dfrac{dx}{dt})^{2}}+{(\dfrac{dy}{dt})^{2}}}dt$ $=\int_{0}^{1} (1+t)^2 (2+3 t) \sqrt {14}dt$ $=\sqrt {14} \int_{0}^{1} 3t^3+8t^2+7t+2 dt$ $=\sqrt {14}[\dfrac{3t^4}{4}+\dfrac{8t^3}{3}+\dfrac{7t^2}{2}+2t] _{0}^{1}$ $=\sqrt {14}[\dfrac{3(1)^4}{4}+\dfrac{8(1)^3}{3}+\dfrac{7(1)^2}{2}+2(1)] _{0}^{1}$ $=\dfrac{107\sqrt {14}}{12}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.