Answer
$\dfrac{5}{2}$
Work Step by Step
$I=\int_{C_1}(x+2y) dx+x^2 dy+\int_{C_2}(x+2y) dx+x^2 dy$
$=\int_{0}^1 [2t+2(t)](2 dt)+(2t)^2(1 dt)+\int_{0}^1 [(2+t)+2(1-t)(1 dt) +(2+t)^2(-1 dt)$
$=\int_{0}^1 8t+4t^2 dt+\int_0^1 (4-t) dt-(4+4t+t^2) dt$
$=4t^2+[\dfrac{4}{3}]_0^1-\dfrac{5t^2}{2}-[\dfrac{t^3}{3}]_0^1$
$= \dfrac{16}{3}-\dfrac{17}{6}$
$=\dfrac{5}{2}$