Answer
$\dfrac{2}{5}(e-1)$
Work Step by Step
$I=\int_{0}^{1} (t)(t^2)(e^{t^5}) (2t) dt$
$I=2 \int_{0}^{1} t^4 \times (e^{t^5}) (2t) dt$
Plug $a=t^5; da=5t^4 dt$
$=\dfrac{2}{5} \int_{0}^{1} (e^a) da$
$=\dfrac{2}{5}(e^1-e^0)$
$=\dfrac{2}{5}(e-1)$