Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.2 Line Integrals - 16.2 Exercises - Page 1124: 8

Answer

$\dfrac{83}{3}$

Work Step by Step

$I=\int_{C_1}x^2 dx+y^2 dy+\int_{C_2}x^2 dx+y^2 dy$ $=8\int_{0}^{\pi/2} \sin^2 (2t) \cos t-\cos^2 t \sin t dt+\int_{0}^{1} (4t)^2 (4 dt) +(2+t)^2 dt$ Plug $a=\sin t; b=\cos t $ and $da=\cos t dt; db=-\sin t dt$ $=8 \int_{0}^{\pi/2} a^2 da+8\int b^2 db+\int_0^1 (64t^2+4+4t+t^2) dt$ $=\dfrac{8}{3} \sin^3(t)]_0^{\pi/2}+\dfrac{8}{3}(\cos^3 t)_0^{\pi/2}+(64(t^3/3)+4t+4(t^2/2)+(t^3/3)) _0^1$ $= \dfrac{8}{3}(1-0+0-1)+\dfrac{83}{3}$ $=\dfrac{83}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.