Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.2 Line Integrals - 16.2 Exercises - Page 1124: 5

Answer

$\dfrac{\pi^6}{3}+2 \pi$

Work Step by Step

$I=\int_{C}(x^2(x^2)+\sin x)(2x dx)=\int_{C}2x^{5}+2x \sin x dx$ $=\int_{0}^{\pi} x(2x^4+2\sin x) dx$ $=\int_{0}^{\pi}\dfrac{2x^6}{5}-2x \cos x-\int (2x^5/5)-2 \cos x dx$ $=\int_{0}^{\pi}\dfrac{x^6}{5}-2x \cos x+2 \sin x+k$ $=[\dfrac{x^6}{3}-2x \cos x+2 \sin x]_{0}^{\pi}$ $= \dfrac{\pi^6}{3}+2 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.