Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.3 Double Integrals in Polar Coordinates - 15.3 Exercises - Page 1055: 31

Answer

$\frac{1}{120}$

Work Step by Step

$\int_0^{\frac{1}{2}}\int_{\sqrt 3y}^{1-y^2}xy^2dxdy$ $x$ = $\sqrt {1-y^2}$ $x^2$ = $1-y^2$ $x^2+y^2$ = $1$ $r^2$ = $1$ $r$ = $1$ $x$ = $\sqrt 3y$ $r\cosθ$ = $\sqrt 3r\sinθ$ $\tanθ$ = $\frac{1}{\sqrt 3}$ $θ$ = $\frac{\pi}{6}$ = $\int_0^{\frac{\pi}{6}}\int_0^1r\cosθ(r\sinθ)^2rdrdθ$ = $\int_0^{\frac{\pi}{6}}\int_0^1r^4\cosθ\sin^2θdrdθ$ = $\frac{1}{5}\int_0^{\frac{\pi}{6}}\cosθ\sin^2θ[r^5]_0^1dθ$ = $\frac{1}{5}\int_0^{\frac{\pi}{6}}\cosθ\sin^2θdθ$ = $\frac{1}{15}[\sin^3θ]|_0^{\frac{\pi}{6}}$ = $\frac{1}{120}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.