Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.3 Double Integrals in Polar Coordinates - 15.3 Exercises - Page 1055: 29

Answer

$\frac{\pi}{4}[1-e^{-4}]$

Work Step by Step

$\int_0^2\int_0^{\sqrt {4-x^{2}}}e^{-x^{2}-y^{2}}dydx$ $y$ = $\sqrt {4-x^{2}}$ $y^2$ = $4-x^{2}$ $x^{2}+y^2$ = $4$ $r^2$ = $4$ $r$ = $2$ $x$ = $2$ $r\cosθ$ =$2$ $2\cosθ$ =$2$ $\cosθ$ = $1$ $θ$ = $0$ $x$ = $0$ $r\cosθ$ =$0$ $2\cosθ$ =$0$ $\cosθ$ = $0$ $θ$ = $\frac{\pi}{2}$ = $\int_0^{\frac{\pi}{2}}\int_0^2{e^{-r^2}}rdrdθ$ = $\frac{1}{2}\int_0^{\frac{\pi}{2}}{-e^{-r^2}} |_0^2dθ$ = $\frac{1}{2}\int_0^{\frac{\pi}{2}} [1-e^{-4}]dθ$ = $\frac{1}{2}[1-e^{-4}][θ]_0^{\frac{\pi}{2}}$ = $\frac{\pi}{4}[1-e^{-4}]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.