Answer
$V$ = $4\pi$
Work Step by Step
$V$ = $\int_0^{2\pi}\int_0^1[4-2r\cosθ-r\sinθ]rdrdθ$
$V$ = $\int_0^{2\pi}\int_0^1[4r-2r^2\cosθ-r^2\sinθ]drdθ$
$V$ = $\int_0^{2\pi}[2r^2-\frac{2}{3}r^3\cosθ-\frac{1}{3}r^3\sinθ]_0^1dθ$
$V$ = $\int_0^{2\pi}[2-\frac{2}{3}\cosθ-\frac{1}{3}\sinθ]dθ$
$V$ = $[2θ-\frac{2}{3}\sinθ+\frac{1}{3}\cosθ]_0^{2\pi}$
$V$ = $(4\pi+\frac{1}{3})-(\frac{1}{3})$
$V$ = $4\pi$