Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.3 Double Integrals in Polar Coordinates - 15.3 Exercises - Page 1055: 14

Answer

$D$ = $\frac{\pi}{2}-\frac{8}{3}$

Work Step by Step

$D$ = $\int{\int}xdA$ $D$ = $\int_0^{\frac{\pi}{2}}\int_2^{2\cosθ}r\cosθrdrdθ$ $D$ = $\int_0^{\frac{\pi}{2}}\int_2^{2\cosθ}r^2\cosθdrdθ$ $D$ = $\frac{1}{3}\int_0^{\frac{\pi}{2}}[r^3]_2^{2\cosθ}\cosθdθ$ $D$ = $\frac{8}{3}\int_0^{\frac{\pi}{2}}[\cos^3θ-1]\cosθdθ$ $D$ = $\frac{8}{3}\int_0^{\frac{\pi}{2}}[\cos^4θ-\cosθ]dθ$ $D$ = $\frac{8}{3}\int_0^{\frac{\pi}{2}}[(\frac{1+\cos2θ}{2})^2-\cosθ]dθ$ $D$ = $\frac{2}{3}\int_0^{\frac{\pi}{2}}[1+2\cos2θ+\cos^2{2θ}-\cosθ]dθ$ $D$ = $\frac{2}{3}\int_0^{\frac{\pi}{2}}[1+2\cos2θ+(\frac{1+\cos4θ}{2})-4\cosθ]dθ$ $D$ = $\frac{1}{3}\int_0^{\frac{\pi}{2}}[3+4\cos2θ+\cos4θ-8\cosθ]dθ$ $D$ = $\frac{1}{3}[3θ+2\sin2θ+\frac{1}{4}\sin4θ-8\sinθ]_0^{\frac{\pi}{2}}$ $D$ = $\frac{1}{3}[\frac{3\pi}{2}+2\sin{\pi}+\frac{1}{4}\sin{2\pi}-8\sin{\frac{\pi}{2}}]$ $D$ = $\frac{\pi}{2}-\frac{8}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.