Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.3 Double Integrals in Polar Coordinates - 15.3 Exercises - Page 1055: 23

Answer

$V$ = $\frac{4}{3}\pi{a^3}$

Work Step by Step

$x^2+y^2+z^2=a^2$ $z$ = $±(a^2-r^2)$ $V$ = $2\int_0^{2\pi}\int_0^a{\sqrt {a^2-r^2}}rdrdθ$ use substitution integration $u$ = $a^2-r^2$ $du$ = $-2rdr$ $-\frac{1}{2}du$ = $dr$ $V$ = $-\frac{2}{3}\int_0^{2\pi}[a^2-r^2]^{\frac{3}{2}}|_0^adθ$ $V$ = $-\frac{2a^3}{3}\int_0^{2\pi}1dθ$ $V$ = $-\frac{2a^3}{3}[θ]_0^{2\pi}$ $V$ = $\frac{4}{3}\pi{a^3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.