Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.3 Double Integrals in Polar Coordinates - 15.3 Exercises - Page 1055: 25

Answer

$V$ = $\frac{\pi}{3}(2-\sqrt 2)$

Work Step by Step

$V$ = $\int_0^{2\pi}\int_0^{\frac{1}{\sqrt 2}}[\sqrt {1-r^2}-r]rdrdθ$ $V$ = $\int_0^{2\pi}\int_0^{\frac{1}{\sqrt 2}}[r\sqrt {1-r^2}-r^2]drdθ$ use integration by substitution $u$ = $1-r^2$ $du$ = $-2rdr$ $-\frac{1}{2}du$ = $dr$ $V$ = $\int_0^{2\pi}[-\frac{1}{3}(1-r^2)^\frac{3}{2}-\frac{1}{3}r^3]_0^{\frac{1}{\sqrt 2}}dθ$ $V$ = $\int_0^{2\pi}[(-\frac{1}{6\sqrt 2}-\frac{1}{6\sqrt 2})-(-\frac{1}{3})]dθ$ $V$ = $\int_0^{2\pi}(-\frac{1}{3\sqrt 2}+\frac{1}{3})dθ$ $V$ = $(-\frac{1}{3\sqrt 2}+\frac{1}{3})[θ]_0^{2\pi}$ $V$ = $\frac{\pi}{3}(2-\sqrt 2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.