Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 441: 52

Answer

the integral converges for $p\lt1$ the integral diverges for $p\geq1$

Work Step by Step

$\int_{R}^{1}\frac{dx}{x^{p}}$ = $\frac{x^{-p+1}}{-p+1}|_{R}^{1}$ = $\frac{1}{-p+1}(1-R^{-p+1})$ $p\lt1$ then $-p+1 \gt 0$ $\int_{0}^{1}\frac{dx}{x^{p}}$ = $\lim\limits_{R \to {0^{+}}}$$\frac{1}{-p+1}(1-R^{-p+1})$ = $\frac{1}{-p+1}(1-0)$ = $\frac{1}{-p+1}$ $p\gt1$ then $-p+1 \lt 0$ $\int_{0}^{1}\frac{dx}{x^{p}}$ = $\lim\limits_{R \to {0^{+}}}$$\frac{1}{-p+1}(1-R^{-p+1})$ = $\infty$ $p=1$ $\int_{R}^{1}\frac{dx}{x^{p}}$ = $\int_{R}^{1}\frac{dx}{x}$ = $\ln{x}|_{R}^{1}$ = $-\ln{R}$ $\int_{0}^{1}\frac{dx}{x^{p}}$ = $\lim\limits_{R \to {0^{+}}}$$-\ln{R}$ = $\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.