Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 441: 44

Answer

$\frac{1}{6}-\frac{1}{4}\ln{\frac{5}{3}}$

Work Step by Step

$\frac{1}{(x+3)(x+1)^{2}}$ = $\frac{A}{x+3}+\frac{B}{x+1}+\frac{C}{(x+1)^{2}}$ $1$ = $A(x+1)^{2}+B(x+1)(x+3)+C(x+3)$ $A$ = $\frac{1}{4}$ $B$ = $-\frac{1}{4}$ $C$ = $\frac{1}{2}$ $\int{\frac{dx}{(x+3)(x+1)^{2}}}$ = $\frac{1}{4}\int{\frac{dx}{x+3}}-\frac{1}{4}\int{\frac{dx}{x+1}}+\frac{1}{2}\int{\frac{dx}{(x+1)^{2}}}$ = $\frac{1}{4}\ln|x+3|-\frac{1}{4}\ln|x+1|-\frac{1}{2(x+1)}+C$ = $\frac{1}{4}\ln|\frac{x+3}{x+1}|-\frac{1}{2(x+1)}+C$ $\int_2^R{\frac{dx}{(x+3)(x+1)^{2}}}$ = $\frac{1}{4}\ln|\frac{x+3}{x+1}|-\frac{1}{2(x+1)}|_2^R$ = $\frac{1}{4}\ln|\frac{R+3}{R+1}|-\frac{1}{2(R+1)}-\frac{1}{4}\ln{\frac{5}{3}}+\frac{1}{6}$ $I$ = $\lim\limits_{R \to {\infty}}$$(\frac{1}{4}\ln|\frac{R+3}{R+1}|-\frac{1}{2(R+1)}-\frac{1}{4}\ln{\frac{5}{3}}+\frac{1}{6})$ = $\frac{1}{6}-\frac{1}{4}\ln{\frac{5}{3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.