Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 441: 50

Answer

the integral diverges

Work Step by Step

$\int{\frac{dx}{x^{2}}}$ = $-\frac{1}{x}+C$ $\int_{-1}^{0}{\frac{dx}{x^{2}}}$ = $\lim\limits_{R \to {0^{-}}}$$\int_{-1}^{R}{\frac{dx}{x^{2}}}$ = $\lim\limits_{R \to {0^{-}}}$$-\frac{1}{x}|_{-1}^{R}$ = $\lim\limits_{R \to {0^{-}}}$$(-\frac{1}{R}+1)$ = $1-\lim\limits_{R \to {0^{-}}}$$\frac{1}{R}$ =$\infty$ $\int_{0}^{1}{\frac{dx}{x^{2}}}$ = $\lim\limits_{R \to {0^{+}}}$$\int_{R}^{1}{\frac{dx}{x^{2}}}$ = $\lim\limits_{R \to {0^{+}}}$$-\frac{1}{x}|_{R}^{1}$ = $\lim\limits_{R \to {0^{+}}}$$(-1+\frac{1}{R})$ = $-1+\lim\limits_{R \to {0^{+}}}$$\frac{1}{R}$ =$\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.