Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 441: 48

Answer

$2$

Work Step by Step

$x$ = $tanθ$ $dx$ = $sec^{2}θdθ$ $\int{\frac{dx}{(1+x^{2})^{\frac{3}{2}}}}$ = $\int{\frac{sec^{2}θ}{sec^{3}θ}}dθ$ = $\int{cosθdθ}$ = $sinθ+C$ = $\frac{x}{\sqrt {1+x^{2}}}+C$ $\int_0^{\infty}{\frac{dx}{(1+x^{2})^{\frac{3}{2}}}}$ = $\lim\limits_{R \to \infty}$$\int_0^{R}{\frac{dx}{(1+x^{2})^{\frac{3}{2}}}}$ = $\lim\limits_{R \to \infty}$$\frac{R}{\sqrt {1+R^{2}}}$ = $1$ $\int_{-\infty}^{0}{\frac{dx}{(1+x^{2})^{\frac{3}{2}}}}$ = $\lim\limits_{R \to -\infty}$$\int_R^{0}{\frac{dx}{(1+x^{2})^{\frac{3}{2}}}}$ = $\lim\limits_{R \to -\infty}$$-\frac{R}{\sqrt {1+R^{2}}}$ = $1$ $\int_{-\infty}^{-\infty}{\frac{dx}{(1+x^{2})^{\frac{3}{2}}}}$ = $1+1$ = $2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.