Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.7 Improper Integrals - Exercises - Page 441: 49

Answer

The integral converges to $0$.

Work Step by Step

We will compute the integral as follows: $\int_{-1}^{1} \dfrac{dx}{x^{1/3}}= \int_{-1}^0 \dfrac{dx}{x^{1/3}}+ \int_{0}^1 \dfrac{dx}{x^{1/3}}=\lim\limits_{R \to 0^{-}} \int_{-1}^0 \dfrac{dx}{x^{1/3}}+\lim\limits_{R \to 0^{+}} \int_{R}^1 \dfrac{dx}{x^{1/3}}\\=\dfrac{3}{2} [\lim\limits_{R \to 0^{-}} [x^{2/3}]_{-1}^R+\lim\limits_{R \to 0^{+}} [x^{2/3}]_{R}^{1}]\\= \dfrac{3}{2} [\lim\limits_{R \to 0^{-}} [R^{2/3}-1]+\lim\limits_{R \to 0^{+}} (1-R^{2/3})]$ Hence, the integral converges to: $\int_{-1}^{1} \dfrac{dx}{x^{1/3}}=\dfrac{3}{2}(-1+1)=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.