Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 754: 29

Answer

The unit tangent vector at $t = \pi $ is ${\bf{T}}\left( \pi \right) = \left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }},0} \right)$.

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {\sin t,t,\cos t} \right)$. The tangent vector is ${\bf{r}}'\left( t \right) = \left( {\cos t,1, - \sin t} \right)$ The unit tangent vector is ${\bf{T}}\left( t \right) = \frac{{{\bf{r}}'\left( t \right)}}{{||{\bf{r}}'\left( t \right)||}} = \frac{{\left( {\cos t,1, - \sin t} \right)}}{{\sqrt {\left( {\cos t,1, - \sin t} \right)\cdot\left( {\cos t,1, - \sin t} \right)} }}$ ${\bf{T}}\left( t \right) = \frac{{\left( {\cos t,1, - \sin t} \right)}}{{\sqrt {{{\cos }^2}t + 1 + {{\sin }^2}t} }} = \left( {\frac{{\cos t}}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}, - \frac{{\sin t}}{{\sqrt 2 }}} \right)$ The unit tangent vector at $t = \pi $ is ${\bf{T}}\left( \pi \right) = \left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }},0} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.