Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 754: 30

Answer

The unit tangent vector $t=1$ is ${\bf{T}}\left( 1 \right) = \left( {\frac{4}{{\sqrt {21} }},\frac{1}{{\sqrt {21} }},\frac{2}{{\sqrt {21} }}} \right)$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {{t^2},{{\tan }^{ - 1}}t,t} \right)$. Since the derivative $\frac{d}{{dt}}{\tan ^{ - 1}}t = \frac{1}{{1 + {t^2}}}$, the tangent vector is ${\bf{r}}'\left( t \right) = \left( {2t,\frac{1}{{1 + {t^2}}},1} \right)$ At $t=1$, we get ${\bf{r}}'\left( 1 \right) = \left( {2,\frac{1}{2},1} \right)$. The unit tangent vector $t=1$ is ${\bf{T}}\left( 1 \right) = \frac{{{\bf{r}}'\left( 1 \right)}}{{||{\bf{r}}'\left( t \right)||}} = \frac{{\left( {2,1/2,1} \right)}}{{\sqrt {\left( {2,1/2,1} \right)\cdot\left( {2,1/2,1} \right)} }}$ ${\bf{T}}\left( 1 \right) = \frac{{\left( {2,1/2,1} \right)}}{{\sqrt {4 + 1/4 + 1} }} = \frac{1}{{\sqrt {21/4} }}\left( {2,\frac{1}{2},1} \right) = \left( {\frac{4}{{\sqrt {21} }},\frac{1}{{\sqrt {21} }},\frac{2}{{\sqrt {21} }}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.