Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 754: 31

Answer

$\kappa \left( 1 \right) = \frac{1}{{2\sqrt 2 }}$

Work Step by Step

We have ${\bf{r}}\left( t \right) = \left( {\ln t,t} \right)$. So, $\left( {x\left( t \right),y\left( t \right)} \right) = \left( {\ln t,t} \right)$. $x'\left( t \right) = \frac{1}{t}$, ${\ \ \ }$ $y'\left( t \right) = 1$ $x{\rm{''}}\left( t \right) = - \frac{1}{{{t^2}}}$, ${\ \ \ }$ $y{\rm{''}}\left( t \right) = 0$ By Eq. (11) of Exercise 28 (Section 14.4), the curvature of a plane curve ${\bf{r}}\left( t \right) = \left( {x\left( t \right),y\left( t \right)} \right)$ is given by (11) ${\ \ \ \ }$ $\kappa \left( t \right) = \frac{{\left| {x'\left( t \right)y{\rm{''}}\left( t \right) - x{\rm{''}}\left( t \right)y'\left( t \right)} \right|}}{{{{\left( {x'{{\left( t \right)}^2} + y'{{\left( t \right)}^2}} \right)}^{3/2}}}}$ Thus, $\kappa \left( t \right) = \frac{{\left| { - \frac{1}{{{t^2}}}} \right|}}{{{{\left( {\frac{1}{{{t^2}}} + 1} \right)}^{3/2}}}} = \frac{1}{{{t^2}}}\frac{{{t^3}}}{{{{\left( {1 + {t^2}} \right)}^{3/2}}}} = \frac{t}{{{{\left( {1 + {t^2}} \right)}^{3/2}}}}$ $\kappa \left( 1 \right) = \frac{1}{{2\sqrt 2 }}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.