Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 754: 28

Answer

The position of the mass at $t=2$ is ${\bf{r}}\left( 2 \right) = \left( {20,4} \right)$

Work Step by Step

We have $m=2$ and ${\bf{F}} = \left( {12t + 4,8 - 24t} \right)$. By Newton's Second Law of Motion, the acceleration is ${\bf{a}} = {\bf{F}}/m = \left( {6t + 2,4 - 12t} \right)$ Step 1. Find the velocity vector We have ${\bf{v}}\left( t \right) = \smallint {\bf{a}}\left( t \right){\rm{d}}t = \smallint \left( {6t + 2,4 - 12t} \right){\rm{d}}t$ $ = \left( {3{t^2} + 2t,4t - 6{t^2}} \right) + {{\bf{c}}_0}$ The initial condition ${\bf{v}}\left( 0 \right) = \left( {2,3} \right)$ gives $\left( {2,3} \right) = \left( {0,0} \right) + {{\bf{c}}_0}$ ${{\bf{c}}_0} = \left( {2,3} \right)$ Thus, ${\bf{v}}\left( t \right) = \left( {3{t^2} + 2t,4t - 6{t^2}} \right) + \left( {2,3} \right)$ ${\bf{v}}\left( t \right) = \left( {3{t^2} + 2t + 2, - 6{t^2} + 4t + 3} \right)$ Step 2. Find the position vector We have ${\bf{r}}\left( t \right) = \smallint {\bf{v}}\left( t \right){\rm{d}}t = \smallint \left( {3{t^2} + 2t + 2, - 6{t^2} + 4t + 3} \right){\rm{d}}t$ ${\bf{r}}\left( t \right) = \left( {{t^3} + {t^2} + 2t, - 2{t^3} + 2{t^2} + 3t} \right) + {{\bf{c}}_1}$ The initial condition ${\bf{r}}\left( 0 \right) = \left( {4,6} \right)$ gives $\left( {4,6} \right) = \left( {0,0} \right) + {{\bf{c}}_1}$ ${{\bf{c}}_1} = \left( {4,6} \right)$ Thus, ${\bf{r}}\left( t \right) = \left( {{t^3} + {t^2} + 2t, - 2{t^3} + 2{t^2} + 3t} \right) + \left( {4,6} \right)$ ${\bf{r}}\left( t \right) = \left( {{t^3} + {t^2} + 2t + 4, - 2{t^3} + 2{t^2} + 3t + 6} \right)$ The position of the mass at $t=2$ is ${\bf{r}}\left( 2 \right) = \left( {20,4} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.