Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - Chapter Review Exercises - Page 754: 35

Answer

$\kappa \left( {{t_0}} \right) = \frac{{13}}{{16}}$

Work Step by Step

We have at ${t_0}$, the speed and acceleration vector given by $v\left( {{t_0}} \right) = 4$ ${\ \ }$ and ${\ \ }$ ${\bf{a}}\left( {{t_0}} \right) = {\bf{r}}{\rm{''}}\left( {{t_0}} \right) = \left( {5,4,12} \right)$ Since at ${t_0}$, the path of a moving particle is tangent to the $y$-axis in the positive direction, so ${\bf{v}}\left( {{t_0}} \right) = {\bf{r}}'\left( {{t_0}} \right) = 4\left( {0,1,0} \right) = \left( {0,4,0} \right)$ By Eq. (3) of Theorem 1 (Section 14.4), the curvature is given by $\kappa \left( {{t_0}} \right) = \frac{{||{\bf{r}}'\left( {{t_0}} \right) \times {\bf{r}}{\rm{''}}\left( {{t_0}} \right)||}}{{||{\bf{r}}'\left( {{t_0}} \right)|{|^3}}}$ $\kappa \left( {{t_0}} \right) = \frac{{||\left( {0,4,0} \right) \times \left( {5,4,12} \right)||}}{{||\left( {0,4,0} \right)|{|^3}}}$ Evaluate $\left( {0,4,0} \right) \times \left( {5,4,12} \right) = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ 0&4&0\\ 5&4&{12} \end{array}} \right| = 48{\bf{i}} - 20{\bf{k}}$ $||\left( {0,4,0} \right) \times \left( {5,4,12} \right)|| = \sqrt {{{48}^2} + {{20}^2}} = 52$ $||\left( {0,4,0} \right)|| = \sqrt {\left( {0,4,0} \right)\cdot\left( {0,4,0} \right)} = 4$ So, $\kappa \left( {{t_0}} \right) = \frac{{||\left( {0,4,0} \right) \times \left( {5,4,12} \right)||}}{{||\left( {0,4,0} \right)|{|^3}}} = \frac{{52}}{{{4^3}}} = \frac{{13}}{{16}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.