Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.3 Dot Product and the Angle Between Two Vectors - Exercises - Page 667: 77

Answer

The bond angle is $\alpha = 1.91$ or $\alpha = 109.47^\circ $

Work Step by Step

Let the point $C = \left( {\frac{1}{2},\frac{1}{2},\frac{1}{2}} \right)$ denote the location of the carbon atom and let ${H_1} = \left( {0,0,0} \right)$ and ${H_2} = \left( {1,1,0} \right)$ denote the locations of the two hydrogen atoms as is shown in Figure 17. We write 1. the vector ${\bf{u}} = \overrightarrow {C{H_1}} = \left( {0,0,0} \right) - \left( {\frac{1}{2},\frac{1}{2},\frac{1}{2}} \right) = \left( { - \frac{1}{2}, - \frac{1}{2}, - \frac{1}{2}} \right)$ 2. the vector ${\bf{v}} = \overrightarrow {C{H_2}} = \left( {1,1,0} \right) - \left( {\frac{1}{2},\frac{1}{2},\frac{1}{2}} \right) = \left( {\frac{1}{2},\frac{1}{2}, - \frac{1}{2}} \right)$ By Eq. (1) of Theorem 2, the angle $\alpha$ between the vectors ${\bf{u}} = \overrightarrow {C{H_1}} $ and ${\bf{v}} = \overrightarrow {C{H_2}} $ is given by $\cos \alpha = \frac{{{\bf{u}}\cdot{\bf{v}}}}{{||{\bf{u}}||||{\bf{v}}||}} = \frac{{\left( { - \frac{1}{2}, - \frac{1}{2}, - \frac{1}{2}} \right)\cdot\left( {\frac{1}{2},\frac{1}{2}, - \frac{1}{2}} \right)}}{{||\left( { - \frac{1}{2}, - \frac{1}{2}, - \frac{1}{2}} \right)||||\left( {\frac{1}{2},\frac{1}{2}, - \frac{1}{2}} \right)||}}$ $\cos \alpha = \frac{{ - \frac{1}{4}}}{{\sqrt {\frac{3}{4}} \sqrt {\frac{3}{4}} }} = - \frac{1}{3}$ $\alpha = 1.91$ ${\ \ \ }$ or ${\ \ \ }$ $\alpha = 109.47^\circ $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.