Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.3 Dot Product and the Angle Between Two Vectors - Exercises - Page 667: 69

Answer

$\textbf{a}=⟨\frac{x-y}{2},\frac{y-x}{2}⟩+⟨\frac{x+y}{2},\frac{y+x}{2}⟩$

Work Step by Step

We are given the vectors $\textbf{a}=⟨x,y⟩$ and $\textbf{b}=⟨1,-1⟩$. We have $\textbf{a}_{\parallel \textbf{b}}=(\frac{\textbf{a}\cdot\textbf{b}}{\textbf{b}\cdot\textbf{b}})\textbf{b}=\frac{x\times1+y\times(-1)}{1^{2}+(-1)^{2}}⟨1,-1⟩=⟨\frac{x-y}{2},\frac{y-x}{2}⟩$ $\textbf{a}_{\perp \textbf{b}}=\textbf{a}-\textbf{a}_{\parallel \textbf{b}}=⟨x,y⟩-⟨\frac{x-y}{2},\frac{y-x}{2}⟩$ $=⟨\frac{x+y}{2},\frac{y+x}{2}⟩$ Therefore, the decomposition of $\textbf{a}$ with respect to $\textbf{b}$ is $\textbf{a}=\textbf{a}_{\parallel \textbf{b}}+\textbf{a}_{\perp \textbf{b}}=⟨\frac{x-y}{2},\frac{y-x}{2}⟩+⟨\frac{x+y}{2},\frac{y+x}{2}⟩$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.