Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.3 Dot Product and the Angle Between Two Vectors - Exercises - Page 667: 74

Answer

$60^{\circ}$

Work Step by Step

We calculate the vectors as follows: $\vec{AB}=⟨1-0,0-0,0-1⟩=⟨1,0,-1⟩$ $\vec{AD}=⟨0-0,1-0,0-1⟩=⟨0,1,-1⟩$ Next, compute the lengths: $||\vec{AB}||=\sqrt {1^{2}+0^{2}+(-1)^{2}}=\sqrt 2$ $||\vec{AD}||=\sqrt {0^{2}+1^{2}+(-1)^{2}}=\sqrt 2$ Now, calculate the dot product: $\vec{AB}\cdot\vec{AC}=⟨1,0,-1⟩\cdot⟨0,1,-1⟩$ $=1\times0+0\times1+(-1)\times(-1)=1$ But $\vec{AB}\cdot\vec{AD}=||\vec{AB}||\,||\vec{AD}||\cos\theta$, where $\theta$ is the angle between $\overline{AB}$ and $\overline{AD}$. $\implies 1=\sqrt {2}\times\sqrt {2}\times\cos\theta$ Or $\theta=\cos^{-1}(\frac{1}{2})=60^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.