Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.3 Dot Product and the Angle Between Two Vectors - Exercises - Page 667: 70

Answer

$\textbf{a}=⟨\frac{x+y+z}{3},\frac{x+y+z}{3},\frac{x+y+z}{3}⟩+⟨\frac{2x-y-z}{3},\frac{-x+2y-z}{3},\frac{-x-y+2z}{3}⟩$

Work Step by Step

We are given the vectors $\textbf{a}=⟨x,y,z⟩$ and $\textbf{b}=⟨1,1,1⟩$. We have, $\textbf{a}_{\parallel \textbf{b}}=(\frac{\textbf{a}\cdot\textbf{b}}{\textbf{b}\cdot\textbf{b}})\textbf{b}=\frac{x\times1+y\times1+z\times1}{1^{2}+1^{2}+1^{2}}⟨1,1,1⟩=⟨\frac{x+y+z}{3},\frac{x+y+z}{3},\frac{x+y+z}{3}⟩$ $\textbf{a}_{\perp \textbf{b}}=\textbf{a}-\textbf{a}_{\parallel \textbf{b}}=$ $⟨x,y,z⟩-⟨\frac{x+y+z}{3},\frac{x+y+z}{3},\frac{x+y+z}{3}⟩$ $=⟨\frac{2x-y-z}{3},\frac{-x+2y-z}{3},\frac{-x-y+2z}{3}⟩$ Therefore, the decomposition of $\textbf{a}$ with respect to $\textbf{b}$ is $\textbf{a}=\textbf{a}_{\parallel \textbf{b}}+\textbf{a}_{\parallel \textbf{b}}$$=⟨\frac{x+y+z}{3},\frac{x+y+z}{3},\frac{x+y+z}{3}⟩+⟨\frac{2x-y-z}{3},\frac{-x+2y-z}{3},\frac{-x-y+2z}{3}⟩$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.