Answer
$\textbf{0}$
Work Step by Step
Projection of $\textbf{u}$ along $\textbf{v}=\textbf{u}_{||\textbf{v}}$$=(\frac{\textbf{u}\cdot\textbf{v}}{\textbf{v}\cdot\textbf{v}})\textbf{v}$
$\textbf{u}\cdot\textbf{v}=⟨a,a,b⟩\cdot ⟨1,-1,0⟩=a\times1+a\times(-1)+b\times0=0$
$\textbf{v}\cdot\textbf{v}=(\sqrt {1^{2}+(-1)^{2}+0^{2}})^{2}=2$
Then, $\textbf{u}_{||\textbf{v}}=(\frac{0}{2})\,(\textbf{i}-\textbf{j})=\textbf{0}$