Answer
$⟨1,1,0⟩$
Work Step by Step
Projection of $\textbf{u}$ along $\textbf{v}=\textbf{u}_{||\textbf{v}}$$=(\frac{\textbf{u}\cdot\textbf{v}}{||\textbf{v}||^{2}})\textbf{v}$
$\textbf{u}\cdot\textbf{v}=⟨1,1,1⟩\cdot ⟨1,1,0⟩=1\times1+1\times1+1\times0=2$
$||\textbf{v}||^{2}=(\sqrt {1^{2}+1^{2}+0^{2}})^{2}=1^{2}+1^{2}=2$
Then, $\textbf{u}_{||\textbf{v}}=(\frac{2}{2})\,⟨1,1,0⟩=⟨1,1,0⟩$