Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.4 Exercises - Page 288: 24

Answer

6.5

Work Step by Step

$f(x)= 3-|x-3|=\left\{\begin{array}{lll} 3-(x-3), & when & x-3 \geq 0\\ 3-[-(x-3)] & when & x-3 < 0 \end{array}\right.$ $f(x)=\left\{\begin{array}{lll} 6-x, & when & x \geq 3\\ x & when & x < 3 \end{array}\right.$ Apply Th.4.6 from section 4-3, Additive Interval Property $\displaystyle \int_{1}^{4}(3-|x-3|)dx=\int_{1}^{3}xdx+\int_{3}^{4}(6-x)]dx$ Use the table "Basic Integration Rules", p.246 $=[\displaystyle \frac{x^{2}}{2}]_{1}^{3}+[6x-\frac{x^{2}}{2}]_{3}^{4}$ $=(\displaystyle \frac{9}{2}-\frac{1}{2})+[(24-8)-(18-\frac{9}{2})]$ $=4+16-18+\displaystyle \frac{9}{2}$ $=\displaystyle \frac{13}{2}$ Checking graphically - see below (work done in desmos.com). We see two trapezoids, one (left) with bases 1 and 3, height 2, one with bases 3 and 2, height 1 $A=\displaystyle \frac{1+3}{2}(2)+\frac{3+2}{2}(1)=4+\frac{5}{2}=6.5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.